Article title: In situ photoexcitation of silver doped titania nanopowders for activity against bacteria and yeasts

Journal title: Journal of Colloid And Interface Science

Abstract Photocatalytic and in situ microbial activity of the amorphous and annealed states of Ag-doped and un-doped titania, were examined. Studies on their structure, morphology, composition and the photo-absorption characteristics of these materials, were performed.

These results were correlated with the photocatalytic and microbial activity against methicillin resistant Staphylococcus aureus K324 (MRSA), methicillin susceptible Staphylococcus aureus ATCC 25923 (MSSA), Escherichia coli PA 170, and yeasts Candida albicans ATCC 90028. The annealed powders containing anatase form of titania exhibited relatively higher photocatalytic activity, corresponding to activity against MRSA, when exposed to UV-A radiation. In comparison, amorphous powders, exhibited low photoactivity and showed poor antibacterial performance against MRSA under UV-A exposure. Doping of amorphous titania with Ag resulted in an anti-MRSA effect without exposure to UV radiation. In the Ag-doped crystalline anatase samples the size of Ag primary nanocrystallites increased, which led to the decrease of the surface concentration of Ag and detriment anti-MRSA activity.

Link http://dx.doi.org/10.1016/j.jcis.2011.06.035

Authors

Katarzyna Kowal a, *, 1,
Katarzyna Wysocka-Król a, 1,
Marta Kopaczyńska a,
Ewa Dworniczek b,
Roman Franiczek b,
Magdalena Wawrzyńska b,
Melinda Vargová c,
Miroslav Zahoran d,
Erik Rakovský c,
Peter Kuš d,
Gustav Plesch c,
Andrej Plecenik d,
Fathima Laffir e,
Syed A.M. Tofail e,
and Halina Podbielska a

a Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

b Department of Microbiology, Medical University of Wroclaw, Chalubinskiego 4, 50-368 Wroclaw, Poland

c Department of Inorganic Chemistry, Faculty of Natural Sciences, 842 15 Bratislava, Slovakia

d Department of Experimental Physics, Faculty of Physics, Mathematics and Informatics, Comenius University, 842 48 Bratislava, Slovakia

e Materials and Surface Science Institute, University of Limerick, Ireland

* Corresponding author. Tel.: +48 71 320 65 80, fax: +48 71 327 77 27.
1 These authors contributed equally to this work.